Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Obtenez des réponses détaillées et précises à vos questions grâce à une communauté d'experts dévoués sur notre plateforme de questions-réponses.

On donne F= 9(-x+1) au carre - 4(2x-3) au carre 1. developper, puis reduire F 2. En remarquant que 9=3 au carre et que 4=2 au carre, ecrire F sous la forme d'une difference de deux carres, C'est-a-dire sour la forme F=A au carre - B au carre 3. En deduire une factorisation de F 4. Resoudre l'equation F=0 5. Verifier que la somme des solutions de l'equation resolue a la question precedente s'ecrit 4+2/7

Sagot :

alek75

F= 9(-x+1)² - 4(2x-3)² = -7x2+30x-27

identité remarquable (a+b)² et (a-b)²

xxx102

Pour la réduction et le développement : utilise les identités remarquables. Pour information, j'ai trouvé :

[tex]\mathrm{F} = -7x^{2}+30x-27[/tex]

Ensuite, pour la différence des carrés, petit indice :

[tex]\mathrm{F}=3^2\left(-x+1\right)^2 - 2^2\left(2x-3\right)^2[/tex]

Pour factoriser, utilise une identité remarquable

Pour résoudre, utilise la propriété qui dit que si un produit est nul alors l'un au moins de ses facteurs est nul.

 

J'espère t'avoir aidé.

Bon courage!

Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.