Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

Bonjour,est ce que vous pourriez m’expliquer comment faire avec le discriminant svp

Bonjourest Ce Que Vous Pourriez Mexpliquer Comment Faire Avec Le Discriminant Svp class=

Sagot :

OzYta

Bonsoir,

Je te refais des rappels de cours :

Soit f une fonction du second degré définie par f(x) = ax² + bx + c.

Le discriminant de cette fonction est défini par Δ = b² - 4ac.

  • Si Δ < 0, l'équation f(x) = 0 n'admet pas de solution.
  • Si Δ = 0, l'équation f(x) = 0 admet une solution : [tex]x_{0}[/tex] = -b / 2a
  • Si Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-b - [tex]\sqrt{delta}[/tex] ) / 2a

[tex]x_{2}[/tex] = (-b + [tex]\sqrt{delta}[/tex] ) / 2a

2x² + 3x - 4 = 0

Or, Δ = 3² - 4 * 2 * (-4)

= 9 + 32

= 41

Comme Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-3 - [tex]\sqrt{41}[/tex] ) / 4

[tex]x_{2}[/tex] = (-3 + [tex]\sqrt{41}[/tex] ) / 4

D'où S = { [tex]\frac{-3-\sqrt{41} }{4};\frac{-3+\sqrt{41} }{4}[/tex] }

x² - [tex]\sqrt{2}[/tex] x + [tex]\frac{1}{2}[/tex] = 0

Or, Δ = (-[tex]\sqrt{2}[/tex])² - 4 * 1 * [tex]\frac{1}{2}[/tex]

= 2 - 2

= 0

Comme Δ = 0, l'équation admet une solution :

[tex]x_{0}[/tex] [tex]=-\frac{-\sqrt{2} }{2}[/tex] [tex]=\frac{\sqrt{2} }{2}[/tex]

D'où S = { [tex]\frac{\sqrt{2} }{2}[/tex] }

On passe à la troisième.

-x² + x + 1 = 3x - 7

⇔ -x² + 4x + 8 = 0  

(on met tout dans le même membre pour avoir 0 dans l'un des membres)

Je te laisse essayer de résoudre. Si tu n'y arrives pas, reviens vers moi.

(x - 2)(-3x² + 19x - 6) = 0

Un produit de deux facteurs est nul si et seulement si l'un des facteurs est nul.

SSI   x - 2 = 0   ou   -3x² + 19x - 6 = 0

SSI   x = 2   ou   -3x² + 19x - 6 = 0

Il faut donc résoudre l'équation -3x² + 19x - 6 = 0 pour résoudre (x - 2)(-3x² + 19x - 6) = 0

-3x² + 19x - 6 = 0

Or, Δ = 19² - 4 * (-3) * (-6)

= 361 - 72

= 289

[tex]\sqrt{289}[/tex] = [tex]\sqrt{17 * 17 } = 17[/tex]

Comme Δ > 0, l'équation f(x) = 0 admet deux solutions distinctes :

[tex]x_{1}[/tex] = (-19 - 17 ) / -6 = -36 / (-6) = 6

[tex]x_{2}[/tex] = (-19 + 17 ) / -6 = (-2) / (-6) = 1/3

Les valeurs de x qui annulent donc (x - 2)(-3x² + 19x - 6) = 0 sont :

2 ; 6 ; 1/3

Pour (x - 2)(-3x² + 19x - 6) = 0, on a : S = {2 ; 6 ; [tex]\frac{1}{3}[/tex] }

Pour la troisième équation, n'hésite pas à me dire ce que tu as trouvé et je te dirai si c'est juste.

En espérant t'avoir aidé(e).

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.