Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses. Trouvez des solutions détaillées à vos questions grâce à une large gamme d'experts sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour
1) Forme canonique de f(x)
f(x) = -0.3x²+1.6x+2
α = (-1.6)/2(-0.3)
α = 8/3
β = f(8/3)
β = 62/15
f(x) = -0.3(x-8/3)²+62/15
2) Hauteur maximale
Le point le plus élevé ou bas d'une parabole c'est le sommet de cette parabole
Dans ce cas ci la parabole est dirigée var les bas donc son sommet est le point maximal atteint .
Pour rappel le sommet S d'une parabole a pour coordonnées S(α;β)
α = -b/2a
β = f(α)
ici tu as déjà résolu à la question une
α = 8/3≅2.7
β = 62/15≅4.1
le point max est donc H = β = 4.1 m
3 . Hauteur du panier
le lancer franc est à 4.6 m du pied du panier donc x = 4.6m
et
f(4.6) = -0.3×(4.6)²+1.6×4.6+2
f(4.6) = 3.012 ≅ 3m
le panier est donc à 3m de hauteur
Bonjour,
1. Forme canonique de f(x)= a(x-α)²+ β *** pas précis la méthode, alors on fait simple
f(x)= - 0.3x²+1.6x+2
on calcule α:
α= -b/2a= (-1.6)/2(-0.3)= -1.6/-0.6= 2.667
on calcule β:
β= - 0.3(2.667)²+1.6(2.667)+2= 4.133
donc f(x)= -0.3(x-2.667)²+4.133
2. La hauteur maximale est égale 4.133 m
3. remplace 4.6 m dans f(x)
f(4.6)= - 0.3(4.6)²+1.6(4.6)+2= 3.012 m
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.