Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

3) Soit P(x) = x3 - 3x2 + 2x + 4 - 2V2
a) Montrer que P(x) est divisible par (x - 2)
b) Déterminer les nombres a et b sachant que
pour tout x ER, P(x) = (x - 2)(x2 + ax + b)
c) Écrire P(x) sous forme de produit de trois
polynômes du premier degré.
d) Résoudre dans R l'équation suivante :
xVx - 3x + V2x + 4 - 2V2 = 0
V=racine
stp j'ai besoin de question d


Sagot :

Réponse :

J'ai pris note de ta correction; il n'y a rien de compliqué mais attention aux erreurs de calcul. Je pense que tu connais la résolution de l'équation du 2d degré via "delta"

Explications étape par étape :

a) P(x) est divisible par (x-2) si P(2)=0

P(2)=8-12+2V2+4-2V2=0

b) Donc P(x) =(x-2)(ax²+bx+c)  on va rechercher les coefficients "a", "b" et "c" par identification  (ou comparaison)

P(x)=ax³+bx²+cx-2ax²-2bx-2c=ax³+(b-2a)x²+(c-2b)x-2c

en  comparant ave l'expression initiale on note que  a=1; -2c=4-2V2  c=-2+V2

b-2a=-3 comme a=1, b=-1

conclusion :P(x)=(x-2)(x²-x-2+V2)

c) Il faut résoudre x²-x-2+V2=0

delta=1-4(-2+V2)=9-4V2 cette valeur est>0 donc 2 solutions

x1=[1-V(9-4V2]/2  et x2=[1+V(9-4V2)]/2

la factorisation de p(x) est P(x)= (x-2)(x-x1)(x-x2) remplace x1 et x2 par les valeurs ci dessus .

On note que x1 est <0 et que x2 est>0 ceci pour la question suivante.

d)  xVx-3x+xV2+4-2V2

On pose Vx=X  ce qui donne

X³-3X²+(V2)X+4-2V2=0

les solutions de cette équation sont X1=[1-V(9-4V2)]/2  et X2=[1+V(9-4V)]/2

les solutions de l'équation initiale sont donc

x=+ou- V(X1 ) impossible car X1<0

Il reste donc deux solutions

x1=-V(X2) et x2=+V(X2)

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.