Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.
Sagot :
Réponse :
Bonjour
Explications étape par étape :
1)
M(x;√x) et A(2;0)
Donc :
AM²=(x-2)²+(√x-0)²
AM²=x²-4x+4+x
AM²=x²-3x+4
AM=√(x²-3x+4)
2)
a)
On résout :
√(x²-3x+4)=4
Les 2 membres sont positifs : on peut donc les élever au carré .
x²-3x+4=16
x²-3x-12=0
Δ=(-3)²-4(1)(-12)=57
x1=(3-√57)/2 qui est < 0 donc on ne retient pas.
x2=(3+√57)/2 qui est solution.
b)
√(x²-3x+4)=1
Les 2 membres sont positifs : on peut donc les élever au carré .
x²-3x+4=1
x²-3x+3=0
Δ=(-3)²-4(1)(3)=-3 < 0 donc pas de solution.
3)
f(x)=x²-3x+4
f '(x)=2x-3
2x-3 > 0 ==> x > 3/2
x------->0........................3/2......................+∞
f '(x)--->............-...............0..........+...............
f(x)----->............D...........f(3/2).....C............
D=flèche qui descend et C=flèche qui monte.
f(3/2)=(3/2)²-3(3/2)+4=9/4-18/4+16/4=7/4
4)
On résout donc AM² ≥ 7/4 soit f(x) ≥ 7/4
D'après le tableau de variation on remarque que l'on a toujours f(x) ≥ 7/4.
Donc S=[0;+∞[.
Mais si tu veux le démontrer , tu fais :
x²-3x+4 ≥ 7/4
x²-3x+16/4-7/4 ≥ 0
x²-3x+9/4 ≥ 0
x²-3x+(3/2)² ≥ 0
(x-3/2)² ≥ 0
Un carré est toujours positif (ou nul ici pour x=3/2).
Donc S= [0;+∞[
Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.