Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses détaillées à vos questions de la part d'une communauté dédiée d'experts sur notre plateforme. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Réponse :
Hello !
Dans la définition de ta suite je suppose que c'est valable à partir du rang n = 1 sinon on a un problème.
Du coup on a montré que la suite était croissante (ce n'est pas évident d'avoir u1 > u0).
Pour tout n, on a que :
[tex]u_{n+1} = u_n + a_{n-1}u_{n-1} \leq u_n + a_{n-1}u_n = u_n(1+a_{n-1}) \leq u_ne^{a_{n-1}}[/tex]
Pour ce faire on a utilisé l'inégalité :
[tex]\forall x \in \mathbb R, e^x \geq 1+x[/tex]
Explications étape par étape :
Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.