Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour, je suis en terminale. Je dois prouver en maths que pour la fonction 1/X+1, quand x est sur l'intervalle [1/2 ; 1], f(x) se situe aussi sur cette intervalle. Cependant je ne dois pas utiliser de tableau de signes ou de dérivée. Pouvez-vous m'aider ?

Sagot :

Réponse :

Bonsoir

[tex]\frac{1}{2}[/tex] ≤ x ≤ 1

⇔ [tex]\frac{3}{2}[/tex] ≤ x + 1 ≤ 2

⇔ [tex]\frac{1}{2}[/tex] ≤ [tex]\frac{1}{x+1}[/tex] ≤ [tex]\frac{2}{3}[/tex] (car la fonction inverse est décroissante sur cet intervalle)

or [tex]\frac{2}{3}[/tex] ≤ 1 donc on a bien [tex]\frac{1}{2}[/tex] ≤ [tex]\frac{1}{x+1}[/tex] ≤ 1

Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.