Bienvenue sur Laurentvidal.fr, où vous pouvez obtenir des réponses fiables et rapides grâce à nos experts. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Bonjour,
Notons x la longueur et y la largeur.
Nous avons le système suivant :
[tex] \left \{ {{perimetre=200} \atop {aire=2100}} \right. \Longleftrightarrow \left \{ {{2(x+y)=200} \atop {xy=2100}} \right. \Longleftrightarrow \left \{ {{x=100-y} \atop {(100-y)y=2100}} \right. [/tex]
La deuxième équation nous donne :
[tex]-y^2+100y-2100=0\\ \Delta=100^2-4\times(-1)\times(-2100)=1600\\\\ \Delta\ \textgreater \ 0 \ \text{,il y a deux racines reelles} \\\\ y= \frac{-100- \sqrt{1600} }{2\times(-1)}= 70 \\\\ ou \\\\ y= \frac{-100+ \sqrt{1600} }{2\times(-1)}= 30[/tex]
Cas 1 : y = 70
[tex]x=100-70=30[/tex]
Cas 2 : y = 30
[tex]x=100-30=70[/tex]
Les dimensions du champs sont donc de 70m de longueur par 30m de largeur (ou inversement en inversant longueur et largeur)
Notons x la longueur et y la largeur.
Nous avons le système suivant :
[tex] \left \{ {{perimetre=200} \atop {aire=2100}} \right. \Longleftrightarrow \left \{ {{2(x+y)=200} \atop {xy=2100}} \right. \Longleftrightarrow \left \{ {{x=100-y} \atop {(100-y)y=2100}} \right. [/tex]
La deuxième équation nous donne :
[tex]-y^2+100y-2100=0\\ \Delta=100^2-4\times(-1)\times(-2100)=1600\\\\ \Delta\ \textgreater \ 0 \ \text{,il y a deux racines reelles} \\\\ y= \frac{-100- \sqrt{1600} }{2\times(-1)}= 70 \\\\ ou \\\\ y= \frac{-100+ \sqrt{1600} }{2\times(-1)}= 30[/tex]
Cas 1 : y = 70
[tex]x=100-70=30[/tex]
Cas 2 : y = 30
[tex]x=100-30=70[/tex]
Les dimensions du champs sont donc de 70m de longueur par 30m de largeur (ou inversement en inversant longueur et largeur)
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.