Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.
Sagot :
Bonjour :))
- Exercice 13
[tex]U_n=-2n^{3}+2n^{2}-4n+1\\\\U_n=n^{3}(-2+\frac{2}{n} -\frac{4}{n^{2}} +\frac{1}{n^{3}}) \\\\ \lim_{n \to +\infty} \frac{2}{n} =0\ \ \ \lim_{n \to +\infty} \frac{4}{n^{2}} =0\ \ \ \lim_{n \to +\infty} \frac{1}{n^{3}}=0\\\\ \lim_{n \to +\infty} (-2+\frac{2}{n} -\frac{4}{n^{2}} +\frac{1}{n^{3}})=-2\\\\ \lim_{n \to +\infty} U_n=-\infty[/tex]
[tex]V_n=3n^{2}-2n+1\\\\V_n=n^{2}(3-\frac{2}{n}+\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} V_n=+\infty[/tex]
[tex]W_n=n-\sqrt{n}\\\\W_n=n(1-\frac{\sqrt{n}}{n})\\\\W_n=n(1-\frac{\sqrt{n}\sqrt{n}}{n\sqrt{n}})\\\\W_n=n(1-\frac{n}{n\sqrt{n}})\\\\W_n=n(1-\frac{1}{\sqrt{n}})\\\\ \lim_{n \to +\infty} W_n=+\infty[/tex]
- Exercice 14
[tex]U_n=-n^{2}+n-1\\\\U_n=n^{2}(-1+\frac{1}{n}-\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} U_n=-\infty[/tex]
[tex]V_n=-3n^{3}+n^{2}-n-4\\\\V_n=n^{3}(-3+\frac{1}{n}-\frac{1}{n^{2}}-\frac{4}{n^{3}})\\\\ \lim_{n \to +\infty} V_n=-\infty[/tex]
[tex]W_n=\frac{3}{2}n^{3}-n\\\\W_n=n^{3}(\frac{3}{2}-\frac{1}{n^{2}})\\\\ \lim_{n \to +\infty} W_n=+\infty[/tex]
Remarque :
- Pour déterminer la limite d'une suite de type polynôme de degré p, on factorise avec le terme de plus haut degré donc p
- Pour déterminer la limite d'une suite en présence d'une racine carrée, on utilise le conjugué du terme
Bonne continuation :))
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.