Laurentvidal.fr simplifie la recherche de solutions à toutes vos questions grâce à une communauté active et experte. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace.
Sagot :
Réponse :
Bonjour
Explications étape par étape :
limite pour n qui tend vers +∞ :
a)
(2^n-5^n=5^n(2^n/5^n - 1)=5^n[ (2/5)^n -1]
Or, quand n tend vers +∞, limite de (2/5)^n=0 car -1 < 2/5 < 1.
Donc :
lim 5^n[ (2/5)^n -1]= lm (5^n)(-1) lim( -5^n)=-∞
b)
lim [(-n²-n+6)/(n²+6n+9}=lim[ n²(-1-1/n+6/n²)/n²(1+6/n+9/n²)]
On simplifie par n² et lim 1/n =0 et lim 1/n²=0
Donc :
lim[ n²(-1-1/n+6/n²)/n²(1+6/n+9/n²)]=lim (-1/1)=-1
Merci d'avoir choisi notre service. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.