Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Trouvez des réponses rapides et fiables à vos questions grâce à l'aide d'experts expérimentés sur notre plateforme conviviale. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour j'ai un problème de maths et j'y arrive pas du tout , j'ai fait la moitié (qui n'est pas écrite ) mais je ne comprend pas cette moitiée: Soit (C) un cercle de centre O et de rayon 1 . Le segment [ KL ] est un diamètre de ce cercle . Un point M varie sur le segment [ KL ]. La perpendiculaire d à la droite passant par M coupe le cercle en deux points N et P . On propose de rechercher s'il existe une position du point M telle que l'aire A du triangle KNP soit maximale . Merci 1- On note x la longueur KM ( x varie donc dans l'intervalle [0;2] ) . En considérant les cas où M appartient à [KO] puis à [OL] , démontrer que la longueur du segment [MP] est dans les deux cas : MP= x*sqrt(2x - x^2). 2- En déduire que l'aire du triangle KNP est donnée par f(x)= x*sqrt(2x- x^2) . 3- Dans la ligne de saisie de geogebra , taper f(x)= x*sqrt(2x- x^2) pour obtenir la courbe représentative de la fonction . 4- On admet que le maximum de cette fonction est atteint pour x =3/2 . Calculer la valeur exacte de cet extremum et comparer cette valeur à la valeur approchée obtenue dans la première partie . 5- Dresser le tableau des variations de la fonction f sur l'intervalle [0;2] . 6- Calculer la valeur exacte de PN , KP , et KN lorsque x=3/2 . Démontrer ainsi la conjecture faite dans la partie expérimentale sur la nature du triangle KNM

Sagot :

Le triangle KPL est rectangle en P et M est le pied de la hauteur issue de P;

On a donc MP/x=(2-x)/MP qui mene à MP=racine(2x-x^2) (pas de x encore !!)

et donc l'aire de KPN qui vaut x*2*MP/2 soit x*MP vaut bien toujours x*rac(2x-x^2) CQFD

 

si x=3/2 f(x) vaut (3/2)*rac(3-9/4)=(3/2)rac(3/4)=3V3/4

 

PN vaut alors V3 , KP et KN valent  aussi V3 (triangle equilatéral)

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Vos questions sont importantes pour nous. Revenez régulièrement sur Laurentvidal.fr pour obtenir plus de réponses.