Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.

Svp à l'aide (n+1)2-1
(Le 2 est un carré)
2)En déduire que tout nombre entier impair peut s'écrire comme la différence des carrés de deux entiers consécutifs.

3) Écrire les nombres 57 et 121 comme différence de deux entiers consécutifs
Je vous remercie


Sagot :

bjr

ce que tu donnes au début de va pas

n et n + 1 sont deux entiers consécutifs

(n + 1)² - n² = n² + 2n + 1 - n² = 2n + 1

                              (n + 1)² - n²   =   2n + 1      (1)

                                ↗                            ↖

     2 entiers consécutifs                   nombre impair

           (différence)

[tout nombre impair peut s'écrire sous la forme 2n + 1   ou n est un entier]

l'égalité (1) montre que :

tout impair est égal à la différence de deux entiers consécutifs

3) Écrire les nombres 57 et 121 comme différence de deux entiers consécutifs

nombre 57  :  il est égal à 2 x 28 + 1     [ ici n = 28 ]

les entiers consécutifs sont 28 et 29

    57 = 29² - 28²

on vérifie : 28² = 784

                   29² = 841

             841 - 784 = 57

nombre 121 :            121 = 120 + 1 = 2 x 60 + 1      n = 60

121 = 61² - 60²

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.