Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
Bonjour classique que l'on traite par des résolutions d'équations successives
Explications étape par étape :
1) f(x)=(-x+a)e^bx
la courbe passe par le point A(0;1) donc f(0)=1
(-0+a)e^0=1 comme e^0=1 a=1 d'où f(x)=(-x+1)e^bx
Dérivée f'(x)=-e^bx+b*e^bx(-x+1)=(e^bx)*(-bx+b-1) ceci par l'application des formules de la dérivée d'un produit et de la dérivée de e^u(x).
On sait que le coefficient directeur de la tangente en A est 1 donc f'(0)=1
ce qui donne 1(b-1)=1 d'où b=2
conclusion f(x)=(-x+1)e^2x.
2) (T) a pour coefficient directeur 1 et passe par le point A(0;1) son équation est y=x+1
3)dérivée f'(x)=-1e^2x+2(e^2x)(-x+1)=(e^2x)(-2x+2-1)=(-2x+1)(e^2x)
f'(x)=0 pour x=1/2
Tableau de signes de f'(x) et de variations de f(x)
limites nécessaires pour dresser le tableau
si x tend vers -oo f(x) tend vers 0+
si x tend vers +oo, f(x) tend vers -oo
x -oo 1/2 +oo
f'(x) + 0 -
f(x) 0+ croi f(1/2) décroi -oo
Calcule f(1/2)=....facile
On note aussi que f(x)=0 pour x=1 ( solution confirmée sur le tracé)
Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.