Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.

Rebonjour, me voila de nouveau bloqué sur une série d'exercice:

Soient x = a/b et y = p/q deux nombres rationnels.

1) Calculer à l'aide de la forme fractionnaire x+y. Le numérateur de x+y est-il un élément de Z? Le dénominateur est-il un élément de Z*? Conclure que la somme de deux nombres est un nombre rationnel.

2) Supposons que (pi + 1) appartient à Q. A l'aide de la conclusion précédente, montrer que pi appartient à Q. Notre supposition était-elle exacte? Comment appelle-t-on ce type de raisonnement?

Merci pour votre aide et le temps que vous aller me consacrer, vous me sauvez .


Sagot :

Gold01

Bonsoir,

1) x+y=a/b+p/q=aq/bq+pb/bq=(aq+pb)/bq

On a dit que x et y sont rationnel. Donc b et q ne peuvent pas être égaux à 0 et ces deux nombres appartiennent à Z. Logiquement bq appartient donc à Z*.

La somme de deux nombres rationnels est donc un nombre rationnel.

2) pi+1 appartient à Q. Or 1 appartient aux entiers naturels donc aussi à Q. Comme la somme de deux rationnels donne un rationne, pi est forcément rationnel.

Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.