Answered

Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

on considère la fonction f défini sur R par f(x)= (x^3)/(3) - x² + x - ( 1/2 ) 1)calculer la dérivée f' de cette fonction f. 2)résoudre f'(x) 3)étudier le signe de la dérivée f', puis en déduire les variations de la fonction f sur R. 4)dresser le tableau de variations de la fonction f 5)préciser les extremums locaux de la fonction f et en quelles valeurs de x ils sont atteints.

 

Ou j'en suis : pour les questions 3 et 5 je ne sais pas du tout comment faire. pour la question 1 : je sais que x^3 devient 3x² , x² devient 2x et x devient 1 pour ce qui est du reste je ne sais pas.( surtout les divisions ) pour la 2)je sais qu'il faut factoriser la dérivée de f et l'un des deux produit est nul et pour la 4 ) je sais que grace aux resultats precendent on dit les signes ( + ou - ) et les fleches pour le sens de variation.



Sagot :

ta derivee est egale a x^2-2x+1

le discriminant est egal a 0 tu as 1 solution  -b/2a  =1

la factorisation te donne (x-1)(x-1)  donc la derivee ne s'annule que pour x=1

 

la derivee est autrement toujours positive donc ton sens de variation est tjs vers le haut sauf pour x=1

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.