Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions à vos questions de manière rapide et précise. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour vous pouvez m’aider a repondre a cet question svp « Pour tout entier naturel n montrer que 5n2 + 3n est un nombre pair » merci d’avance

Sagot :

Explications étape par étape:

Bonsoir, plusieurs possibilités de résolution.

Tu peux, par exemple, raisonner par l'absurde, en supposant que n est impair.

Tu poseras n = 2k + 1, avec k entier naturel, et logiquement, tu aboutiras à une contradiction.

Une méthode optimale, serait de le prouver, en évitant au maximum les calculs, de façon astucieuse.

En voici une :

5n^2 + 3n = 5n^2 + 5n - 2n (n^2 = n au carré), jusqu'ici aucun souci.

5n^2 + 5n - 2n = 5n*(n + 1) - 2n.

Or, n et n+1 sont des entiers consécutifs, il y en aura donc un pair, et l'autre impair. Le produit d'un nombre pair par un impair étant pair, 5n*(n+1) est pair.

De +, 2n est clairement pair. Par conséquent, la soustraction de 2 nombres pairs fournissant un nombre pair, on peut conclure.

Résumé : 5n*(n+1) est pair car n*(n+1) est impair (produit d'entiers consécutifs). 2n est pair par définition. Donc la différence est pair.

Bonne soirée

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Visitez Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.