Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonsoir, je rencontre des difficultés avec la première question de cet exercice sur les suites. J'ai réussi à calculer les 4 premiers termes, parcontre je n'arrive pas à trouver une conjecture en fonction de n.

Mes résultats :
u1 = 1/2
u2 = 1/3
u3 = 1/4
u4 = 1/5

Exercice 5 :

Soit (Un) une suite définie par uo = 1 et pour tout n appartenant à N par :

Un+1 = Un/1+Un

1. Calculer u1, u2, u3, u4. Quelle conjecture peut-on faire sur l'expression de Un en fonction de n.​


Sagot :

caylus

Réponse :

Bonsoir,

Explications étape par étape :

[tex]u_0=1\\u_{n+1}=\dfrac{u_n}{1+u_n} \\\\Recherche\ de\ la\ limite\ l \ si\ elle\ existe:\\\\l=\dfrac{l}{1+l} \\\\l+l^2=l\\l=0\ (\ racine\ double)\\On\ pose:\\\\v_n=\dfrac{1}{u_n-0} \\\\\boxed{v_n=\dfrac{1}{u_n} }\\\\v_0=1\\\\v_{n+1}=\dfrac{1}{u_{n+1}}=\dfrac{1}{\dfrac{u_n}{1+u_n}} =\dfrac{1+u_n}{u_n}=\dfrac{1}{u_n} +1 =v_n+1\\\\La\ suite\ (v_n)\ est \ arithm\' etique\ de\ raison\ 1.\\\\v_n=v_0+1*n=1+n\\\\\boxed{u_n=\dfrac{1}{1+n} }\\[/tex]

[tex]\\u_1=\dfrac{1}{1+1}=\dfrac{1}{2}\\\\\\u_2=\dfrac{1}{2+1}=\dfrac{1}{3}\\\\\\u_3=\dfrac{1}{3+1}=\dfrac{1}{4}\\\\\\u_4=\dfrac{1}{4+1}=\dfrac{1}{5}\\\\[/tex]

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.