Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Réponse :
Bonsoir,
Explications étape par étape :
[tex]u_0=1\\u_{n+1}=\dfrac{u_n}{1+u_n} \\\\Recherche\ de\ la\ limite\ l \ si\ elle\ existe:\\\\l=\dfrac{l}{1+l} \\\\l+l^2=l\\l=0\ (\ racine\ double)\\On\ pose:\\\\v_n=\dfrac{1}{u_n-0} \\\\\boxed{v_n=\dfrac{1}{u_n} }\\\\v_0=1\\\\v_{n+1}=\dfrac{1}{u_{n+1}}=\dfrac{1}{\dfrac{u_n}{1+u_n}} =\dfrac{1+u_n}{u_n}=\dfrac{1}{u_n} +1 =v_n+1\\\\La\ suite\ (v_n)\ est \ arithm\' etique\ de\ raison\ 1.\\\\v_n=v_0+1*n=1+n\\\\\boxed{u_n=\dfrac{1}{1+n} }\\[/tex]
[tex]\\u_1=\dfrac{1}{1+1}=\dfrac{1}{2}\\\\\\u_2=\dfrac{1}{2+1}=\dfrac{1}{3}\\\\\\u_3=\dfrac{1}{3+1}=\dfrac{1}{4}\\\\\\u_4=\dfrac{1}{4+1}=\dfrac{1}{5}\\\\[/tex]
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.