Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour, j’ai réussi S1 et S2, quelqu’un peut m’aider pour les 2 autres svp j’arrive vraiment pas
Merci


Bonjour Jai Réussi S1 Et S2 Quelquun Peut Maider Pour Les 2 Autres Svp Jarrive Vraiment Pas Merci class=

Sagot :

S3

La technique ici est de séparer la somme en deux sommes. Dans le cas général, on a :

[tex]\sum^{n}_{i=0} (x_i + y_i) = \sum^{n}_{i=0} x_i + \sum^{n}_{i=0} y_i[/tex]

Donc dans notre cas, on a :

[tex]\sum^{n}_{k=0} (U_k - 1) = \sum^{n}_{k=0} U_k - \sum^{n}_{k=0} (-1) = n(n+2) - (n+1)\\= n^2 + n - 1[/tex]

Pour le voir sans connaître la propriété, il est possible de développer la somme pour voir ce que cela "donne". On peut observer qu'à chaque fois il y a -1 qui revient et les termes [tex]U_k[/tex], on regroupe les -1 d'un côté et les [tex]U_k[/tex] de l'autre.

S4

Il faut remarquer que [tex]\sum^{2n}_{k=n+1} U_k = \sum^{2n}_{k=0} U_k - \sum^{n}_{k=0} U_k[/tex].

Or [tex]\sum^{2n}_{k=0} U_k = 2n(2n + 2) = 4n(n+1)[/tex] (S1).

On a donc :

S4 = 4n(n+1) - n(n+2)

On développe puis réduit :

S4 = 3n² + 2n