Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la meilleure plateforme de Q&R. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.
Sagot :
Réponse :
Exercice 4 (b)
Procédons de manière méthodique.
[tex]f^4(x) = \sqrt{x^2 - 1}^4\\\\f^4(x) = (\sqrt{x^2 - 1})^2)^2\\\\f^4(x) = (x^2 - 1)^2[/tex]
On développe :
[tex]f^4(x) = x^4 - 2x^2 + 1[/tex]
De plus, on a :
[tex]g^4(x) = (\frac2x)^4\\\\g^4(x) = \frac{2^4}{x^4}\\\\g^4(x) = \frac{16}{x^4}[/tex]
Donc finalement :
[tex]f^4(x) + g^4(x) = x^4 - 2x^2 + 1 + \frac{16}{x^4}[/tex]
Le domaine de définition est l'ensemble des réels privé de 0 puisque le dénominateur d'une fraction doit être différent de 0, autrement dit l'ensemble de définition est : [tex]\mathbb{R}\backslash\lbrace{0}\rbrace$[/tex].
Exercice 2 (c)
[tex]g^2(x) = (\frac{2}{x+3})^2\\\\g^2(x) = \frac{4}{(x+3)^2}\\[/tex]
Remplaçons x par 3 :
[tex]g^2(3) = \frac{4}{6^2}[/tex]
[tex]g^2(3) = \frac19[/tex]
Nous apprécions votre temps. Revenez quand vous voulez pour obtenir les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.