Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.
Sagot :
Bonjour,
On a k<=n
Donc k + n^2 <= n + n^2
Donc 1 / (k+n^2) >= 1 / (n+n^2)
Et n / (k+n^2) >= n / (n+n^2)
Donc ∑ n / (k+n^2) >= ∑ n / (n+n^2) (pour k variant de 1 à n)
Et ∑ n / (n+n^2) (pour k variant de 1 à n) = n^2 / (n^2 + n)
D'où l'inégalité de gauche.
Pour l'inégalité de droite, tu pars du même principe :
k >= 1 donc k + n^2 >= 1 + n^2
etc ...
Avec exactement le même cheminement, on montre l'inégalité de droite.
Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.