Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète.

bonsoir pouvez vous m'aider en détaillant dans cet exercice de mathémathiques :

1) monter que, pour tout réel ''x'' positif ,[tex]\frac{2x+6}{x+1} =2+\frac{4}{x+1}[/tex]
2)monter que, pour tout réel ''x'' positif,[tex]\sqrt{1+x+2\sqrt{x} } =1+\sqrt{x}[/tex]


Sagot :

Réponse :pour la première on va montrer que ce qui est à droite est égal a ce qui est a droite

Donc

2+4/X+1=(2x+2+2)/x+1 jai mis au même numérateur donc voila c’est prouvé

Pour la deuxième

On va factoriser par racine de x ce quil y a en dessous de la grande racine carre donc ca donne on sait que (1+ √x)aucarré = 1+x+2 *√x

Donc on peut écrire que la grande racine carré est égale a √((1+ √x)aucarré) or la racine carré enlève le carré donc ca donne finalement (1+ √x) voila

Explications étape par étape :

Réponse :

1) pour tout réel x > 0

montrer que  (2 x + 6)/(x + 1) = 2 + 4/(x + 1)

(2 x + 6)/(x + 1) = (2 x + 6 + 2 - 2)/(x +1)

                        = ((2 x + 2) + 4)/(x + 1)

                        = (2 x + 2)/(x + 1)) + 4/(x + 1)

                        = 2(x + 1)/(x + 1)  + 4/(x + 1)

                        = 2  + 4/(x + 1)

2) montrer que, pour tout réel x positif

 √(1 + x + 2√x) = 1 + √x

x ≥ 0  ⇔ √x ≥ 0  car la racine est croissante sur [0 ; + ∞[

⇔ 2√x ≥ 0  ⇔ x + 2√x ≥ x  ⇔ 1 + x +2√x ≥ 1 + x

⇔ √(1 + x + 2√x) ≥ √(1 + x)  ≥ 1 + √x

donc √(1 + x + 2√x) = 1 + √x

Explications étape par étape :

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de visiter Laurentvidal.fr. Revenez souvent pour obtenir les réponses les plus récentes et des informations.