Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour, s'il vous plait aidez moi :/ ( je suis en 3ème) H= (x-4)²-x(x-10) a) Développer, puis reduire H b) Résoudre l'équation H = 16 I= (7x-3)²-5² a) Factoriser I b) Résoudre l'équation I = 0 A=(x-1)²+x²+(x+1)² a) Développer puis réduire A b) Déterminer trois nombres entiers positifs consécutifs, (x-1), x et (x+1), dont la somme des carrés est 1325 Bonne chance & merci :p



Sagot :

Aeneas

Bonjour Jane98

 

a) H = (x-4)²-x(x-10) = x²-8x+16-x²+10x = 2x+16

b) On cherche x tel que H = 16, donc tel que 2x+16 = 16, On a alors :

    2x = 16-16 = 0. Soit x = 0

 

a) On remarque que I est de la forme a²-b², on a alors :

I = (7x-3)²-5² = (7x-3+5)(7x-3-5) = (7x+2)(7x-8)

b) On cherche x tel que I = 0, donc tel que (7x+2)(7x-8)=0.

   Or un produit de facteurs est nul si et seulement si l'un au moins des facteurs est nul.

   Donc  7x+2 = 0  ou  7x-8 = 0

   C'est à dire 7x = -2 ou 7x = 8

   D'où x = -2/7 ou x = 8/7

 

a) A = (x-1)²+x²+(x+1)² = x² - 2x + 1 + x² +x² +2x + 1 = 3x² +2

b) On cherche x tel que (x-1)² + x² + (x+1)² = 1325

   Donc tel que 3x²+2 = 1325

  D'où 3x² = 1323

 x² = 1323/3 = 441

x est un entier positif, la seule réponse est donc :

x = 21

Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.