Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés dans divers domaines sur notre plateforme. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels.
Sagot :
Réponse :
démontrer que
√a + √b ≠ √(a + b)
soit a et b deux nombres réels ≥ 0
(√a + √b)² = a + 2√a√b + b = a + 2√ab + b
(√(a+b))² = a + b
donc on a bien √a + √b ≠ √(a + b)
et que √a - √b ≠ √(a-b) a ≥ b
(√a - √b)² = a - 2√ab + b
(√(a-b))² = a - b
on on a bien √a - √b ≠ √(a-b)
Explications étape par étape :
Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.