Bienvenue sur Laurentvidal.fr, la meilleure plateforme de questions-réponses pour trouver des réponses précises et rapides à toutes vos questions. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.
Sagot :
Bonsoir,
Exercice 1 :
1) Des mathématiciens grecs ont employés le théorème du "maître" (autrement dit, "de Pythagore") dans un carré de côté 1, pour calculer la longueur de sa diagonale.
Quelle est la longueur de la diagonale (ce nombre "inexprimable") ?
On utilise le théorème :
longueur de la diagonale² = 1² + 1² = 1 + 1 = 2
longueur de la diagonale = [tex]\sqrt{2}[/tex]
La diagonale d'un carré de côté 1 mesure [tex]\sqrt{2}[/tex] (unité de longueur).
2) D'après le texte, Pythagore disait que "tout est nombre". Cela veut dire que tout nombre peut s'écrire sous la forme d'un entier ou d'une écriture fractionnaire.
Or, on sait que 1 < [tex]\sqrt{2}[/tex] < 2 car [tex]\sqrt{2}[/tex] ≈ 1.414... Donc [tex]\sqrt{2}[/tex] ne peut pas être écrit sous forme d'un entier.
De plus, [tex]\sqrt{2}[/tex] ∉ ℚ car [tex]\sqrt{2}[/tex] ne peut pas être écrit sous la forme [tex]\frac{p}{q}[/tex] avec [tex]p[/tex] entier relatif et [tex]q[/tex] entier naturel non nul. On en conclut que [tex]\sqrt{2}[/tex] ∈ ℝ et ne peut pas être écrit sous forme fractionnaire.
En espérant t'avoir aidé(e).
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.