Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour,
Quelqu'un pourrait m'expliquer comment puis-je faire pour factoriser cette expression algebrique à l'aide de l'identité remarquable. Merci bien.

CONSIGNE:
À l’aide de l’identité remarquable donnée, factoriser les expressions algébriques suivantes.

Bonjour Quelquun Pourrait Mexpliquer Comment Puisje Faire Pour Factoriser Cette Expression Algebrique À Laide De Lidentité Remarquable Merci Bien CONSIGNE À Lai class=

Sagot :

Réponse :

Explications étape par étape :

[tex]\frac{x^{2} }{4} -\frac{4}{9}[/tex]  est de la forme développée a²- b² et dont l'identité remarquable est a²- b² = (a+b)(a-b)

Il faut déterminer a et b

           avec a²= [tex]\frac{x^{2} }{4}[/tex]  donc a= [tex]\frac{\sqrt x^{2} }{\sqrt{4} }[/tex] soit a=[tex]\frac{x}{2}[/tex]

           

           et b² = [tex]\frac{4}{9}[/tex] donc b= [tex]\frac{\sqrt{4} }{\sqrt{9} }[/tex]  soit b= [tex]\frac{2}{3}[/tex]

maintenant qu'on a déterminé a et b,

on va pouvoir factoriser l'expression selon l'identité remarquable a²- b² = (a+b)(a-b)

on a plus qu'à remplacer a et b dans l'expression:

(a+b)(a-b) = ([tex]\frac{x}{2} + \frac{2}{3}[/tex]) ([tex]\frac{x}{2} - \frac{2}{3}[/tex]) => forme factoriser de l'expression [tex]\frac{x^{2} }{4} -\frac{4}{9}[/tex]

Merci de votre passage. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. À bientôt. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.