Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

Bonjour,

voici mon exercice 

 

ABC est un triangle isocèle tel que AC = 10cm et ACB = 36°. La médiatrice de [AC] est (AB) en I. On trace le cercle de centre I passant par A et C. L'arc AC est un arc d'ogive. On trace le symétrique de cet arc dans la symétrie d'axe (AC).
Les deux arcs forment une voûte d'ogive. Le but le l'exercice est de calculer la longueur de cet voûte d'ogive.

1) Démontrez que le triangle CIB est isocèle.
2) a. Démontrez que AI = 10(1+2cos72)
b. Déduisez-en que la voûte d'ogive a pour longueur : 
      4(1+2cos72)
c. Donnez de cette longueur une valeur approchée à 1 cm près.

 

 

voilà j'espère que quelqu'un pourra m'aider :)

 

 



Sagot :

Recoucou,

 

Je t'ai déjà donnée les éléments de réponses pour la 1) et les autres.

 

En ce qui concerne la 2)

 

Il faut utiliser le fait que AI = AB + BI

Pour trouver AB, on se sert de la trigonométrie. Dans le triangle AHC (on note H, la hauteur du triangle isocèle ABC), on cherche la valeur de AH

Puis on le multipliera par 2 pour obtenir AB.

Et finalement on ajoute BI, qu'on trouve aussi grace à la trigonométrie. On se sert du triangle rectangle CHI.

 

Voilà ;)

Nous apprécions votre temps. Revenez quand vous voulez pour les informations les plus récentes et des réponses à vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr est là pour vos questions. N'oubliez pas de revenir pour obtenir de nouvelles réponses.