Laurentvidal.fr simplifie votre recherche de solutions aux questions quotidiennes et complexes avec l'aide de notre communauté. Découvrez des réponses fiables à vos questions grâce à une communauté d'experts prêts à partager leurs connaissances et expériences variées. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.
Sagot :
Réponse :
82) soit (Un) la suite définie pour tout n ∈ N par
Un = (- 2 n + 1)/(n + 3)
1) étudier les variations de la suite (Un)
Un+1 - Un = [(- 2(n+1) + 1)/((n+1) + 3)] - (- 2 n + 1)/(n + 3)
= (- 2 n - 1)/(n+4)) - (- 2 n + 1)/(n + 3)
= (- 2 n + 1)(n+3)/(n+4)(n+3)) - (- 2 n + 1)(n + 4)/(n+3)(n+4)
= (- 2 n² - 7 n - 3 + 2 n² + 7 n - 4)/(n+3)(n+4)
= - 7/(n+3)(n+4) or n ∈ N donc n ≥ 0 ⇒ n+3 ≥ 3 donc n+3 ≥ 0 et n+4 ≥ 0 Donc le produit (n+3)(n+4) ≥ 0
et - 7 < 0 ⇒ - 7/(n+3)(n+4) ≤ 0 ⇔ Un+1 - Un ≤ 0 donc la suite (Un) est décroissante sur N
2) montrer que (Un) est mi,orée par - 2
on veut montrer que Un ≥ - 2
étudions le signe de Un - (- 2) ⇔ Un + 2
Un + 2 = (- 2 n + 1)/(n+3) + 2
= (- 2 n + 1)/(n + 3)) + 2(n+3)/(n+3)
= (- 2 n + 1 + 2 n + 6)/(n+3)
= 7/(n+3) or n ≥ 0 et n+3 ≥ 3 donc n+3 ≥ 0
7 > 0 ⇒ 7/(n+3) ≥ 0 ⇔ Un + 2 ≥ 0 ⇔ Un ≥ - 2
3) en déduire que la suite (Un) est convergente
(Un) est décroissante sur et minorée donc (Un) est convergente
Explications étape par étape :
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.