Découvrez les solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R la plus fiable et rapide. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Énoncer : On considère les nombre à 6 chiffres dont chacun des 4 derniers chiffres est égal à la somme des 2 chiffres le précédant. Par exemple, le chiffre des unités est la somme du chiffre des dizaines et de celui des centaines. Combien y a t'il de tels nombres a 6 chiffres ? 

 

A)aucun        B)1         C)2         D)4            E)6

 

 

Merci beaucoup d'avance car je ne trouve pas dutout 



Sagot :

Coucou,

 

il y en a un seul : 112358 ( 5+3=8, 2+3=5, 1+2=3 et 1+1=2) donc c'est bon

 

Comment j'ai fait ?

Et bien, j'ai essayé avec tout les nombres (de 9 à1) en commencant par celui des unités, sachant que dans ce cas le nombre qui le précede ne peut plus grand que celui-ci : 

par exemple pour 9 (=unité) :

???189 (8+1=9, mais après je ne peux plus continuer car j'aurais 8=1+7....)

??1279 (après 2, je ne peux que mettre 1, dans ce cas je ne peux plus continuer après)

???369 (pareil, je bloque par la suite car je n'ai que la possibilité de faire 6=3+3)

??1459 (-->4+5=9, 1+4=5 après le 1, je bloque, c'est pourquoi, je ne peux avoir un nombre à 6 chiffres)

???549 (le nombre qui prècede ne peut etre plus grand, sinon, je bloque )

???639 (pareil, je peux avoir seulement un nombre à 3chiffres

 

Tu fais la meme chose avec les autres nombres

et normalement tu trouveras seulement ce que je trouve.

 

Voilà ;)

 

 

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci de votre passage. Nous nous efforçons de fournir les meilleures réponses à toutes vos questions. À la prochaine. Merci d'utiliser Laurentvidal.fr. Revenez pour obtenir plus de connaissances de nos experts.