Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.
Sagot :
CoucoU,
Je te pris tout d'abord de ne pas copier sans réfléchir, mais de chercher à comprendre.
1)Volume d'un parallélépipède rectangle :
aire de la base * h = B * h
B=AM= x * x = x²
h= AN = AE - EN = 6-x
Donc V(x) = B*h = x²(6-x)
3)a)Ici, il faudras que tu développes V(x)-16 et (2-x)(x-2-2√3) (x-2+2√3) séparément et que tu démontres qu'ils sont égaux.
Donc V(x)= x²(6-x) - 16 = 6x² - x^3 - 16 = - x^3 + 6x² - 16
Et (2-x)(x-2-2√3) (x-2+2√3)
= (2-x)(x-2-2√3)(x-2+2√3) --> on remarque que (x-2-2√3) (x-2+2√3) =
[(x-2)-(2√3]) [(x-2)+(2√3)] et qu'on peut utilisé la formule (a-b)(a+b) = a²-b² ou a= (x-2) et b=(2√3)
= (2-x) [(x-2)²-(2√3)²] puis on développe
= [(2-x) (x-2)²] - [(2-x) (2√3)²]
= [(2-x) (x²- 4x+4)] - [12(2-x)] car (2√3)²=4*3=12
=[ x²(2-x) - 4x(2-x)+4(2-x)] - 24+12x
=2x²-x^3 - 8x +4x²+ 8- 4x - 24+12x
=-x^3+2x²+4x²+12x- 8x- 4x- 24+ 8
=...(je pense que tu peux continuer)
3)Ca revient à faire V(x) - 16 = 0 ou (2-x)(x-2-2√3)(x-2+2√3)=0
Tu peux déjà voir les solutions sur ton graphique
donc les solutions --> 5,5 et 2 (c'est ce que tu dois trouver)
Tu devras résoudre l'équation (2-x)(x-2-2√3)(x-2+2√3)=0 pour cela
tu fais (2-x) =0 c'est facile !
(x-2+2√3)=0 -->x=2+2√3 x=5,5 ok
(x-2-2√3) =0 ...
Je te rappelle que ici on cherche les solutions pour tout x de [ 0 ; 6 ], cela revient à dire que les x qui ne font pas partie de cette intervalles ne sont pas des solutions
Voilà ! :)
N'oublie pas, tu dois comprendre, c'est l'essentiel, parce que le jour du controle tu ne pourras demander de l'aide sur ce site.
Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.