Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts.

Bonjour j'ai un exercice que j'arrive pas a faire, si vous pouviez m'aider.

ABCDEFGH est un cube  de coté 6cm. Pour tout x de [ 0 ; 6 ] on place M sur [AB]et Q sur [AD] tels que AM = EN = AQ = x 

 

On note V(x) le volume du parallélépipède rectangle AMRQNPTS.La fonction V est representée ci-dessous 

 

1. Justifier que, pour tout x de [0 ; 6 ], V(x)=x²(6-x)

2. Justifier que, pour tout x de [0 ; 6 ], V(x)=x²(6- x)

3. a) Démontrer que, pour tout x de [ 0 ; 6 ], V(x) - 16 = (2-x)(x-2-2-√3)(x-2+2√3)

3.b) Résoudre l'équation V(x) = 16. Quel(s) controle(s) peut on effectuer sur les solutions ?

 

MERCI.



Bonjour Jai Un Exercice Que Jarrive Pas A Faire Si Vous Pouviez Maider ABCDEFGH Est Un Cube De Coté 6cm Pour Tout X De 0 6 On Place M Sur ABet Q Sur AD Tels Que class=
Bonjour Jai Un Exercice Que Jarrive Pas A Faire Si Vous Pouviez Maider ABCDEFGH Est Un Cube De Coté 6cm Pour Tout X De 0 6 On Place M Sur ABet Q Sur AD Tels Que class=

Sagot :

CoucoU,

Je te pris tout d'abord de ne pas copier sans réfléchir, mais de chercher à comprendre.

 

1)Volume d'un  parallélépipède rectangle :

aire de la base * h = B * h

B=AM= x * x = x²

h= AN = AE - EN = 6-x

Donc V(x) = B*h = x²(6-x) 

 

3)a)Ici, il faudras que tu développes V(x)-16 et  (2-x)(x-2-2√3) (x-2+2√3) séparément  et que tu démontres qu'ils sont égaux.

 

Donc V(x)=  x²(6-x) - 16 = 6x² - x^3 - 16 =  - x^3 + 6x² - 16

Et  (2-x)(x-2-2√3) (x-2+2√3) 

 (2-x)(x-2-2√3)(x-2+2√3) --> on remarque que (x-2-2√3) (x-2+2√3) =

[(x-2)-(2√3]) [(x-2)+(2√3)] et qu'on peut utilisé la formule (a-b)(a+b) = a²-b² ou a= (x-2) et b=(2√3)

 

= (2-x) [(x-2-(2√3)²puis on développe

= [(2-x) (x-2)²] - [(2-x) (2√3)²]

= [(2-x) (x²- 4x+4)] - [12(2-x)] car  (2√3)²=4*3=12

=[ (2-x) - 4x(2-x)+4(2-x)] - 24+12x

=2-x^3 - 8x +4+ 8- 4x - 24+12x

=-x^3+2+4+12x- 8x- 4x- 24+ 8

=...(je pense que tu peux continuer)

 

 

3)Ca revient à faire  V(x) - 16 = 0 ou (2-x)(x-2-2√3)(x-2+2√3)=0 

Tu peux déjà voir les solutions sur ton graphique

donc les solutions --> 5,5 et 2 (c'est ce que tu dois trouver)

 

Tu devras résoudre l'équation (2-x)(x-2-2√3)(x-2+2√3)=0  pour cela 

tu fais (2-x) =0  c'est facile !

(x-2+2√3)=0 -->x=2+2√3 x=5,5 ok 

(x-2-2√3) =0 ... 

Je te rappelle que ici on cherche les solutions pour  tout x de [ 0 ; 6 ], cela revient  à dire que les x qui ne font pas partie de cette intervalles ne sont pas des solutions

 

Voilà ! :)

N'oublie pas, tu dois comprendre, c'est l'essentiel, parce que le jour du controle tu ne pourras demander de l'aide sur ce site.

 

 

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr est toujours là pour fournir des réponses précises. Revenez nous voir pour les informations les plus récentes.