Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Connectez-vous avec des professionnels prêts à fournir des réponses précises à vos questions sur notre plateforme complète de questions-réponses.
Sagot :
1) la un tu as éffectivement faux, tu as le périmètre du demi cercle il faut aussi que tu comptes les périmètres des demi cercle D et D'.
c'est à dire que P(x)= [tex]\frac{\pi*AB}{2}[/tex] auquel tu ajoutes les périmètres de D et D' qui sont à l'intérieur.
d'où P(x)=[tex]\frac{ AB\pi}{2}+\frac{ x \pi}{2}+\frac{(10-x)\pi}{2}[/tex]
si tu ne comprends pas
dessines les 3 cercles visualises la surface S et en commençant par le point A suit le périmètre avec un crayon.
donc P(x)=[tex]10\pi[/tex] tu en conclus que le périmètre P(x) est une constante.
et la surface S a pour aire A(x).
A(x)=[tex]\frac{\pi * 10^2}{8} - \frac{x^2 *\pi}{8} - \frac{(10-x)^2 *\pi}{8}[/tex]
A(x)=[tex]\frac{-x^2 *\pi}{4} + \frac{10x}{4}[/tex]
3) après je sais pas où tu en est dans le lycée
le maximum de A(x) est atteint pour x= [tex]\frac{\frac{-10}{4}}{\frac{2*-1}{4}}[/tex]
donc x (max)=5 donc la positionde M est le milieu de AB.
autrement, tu mets A(x) sous forme canonique
A(x)= [tex]\frac{-(x-5)^2 \pi}{4} + 25 [/tex]
or (x-5)²≥0 pour tout x dans R
-(x-5)²≤0 donc [tex]\frac{-(x-5)^2}{4}[/tex]+ 25≤ 25
donc le maximum de A(x) est 25 cm² et ce maximum est atteint quand -(x-5)=0 donc x=5
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.