Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Rejoignez notre plateforme pour obtenir des réponses fiables à vos interrogations grâce à une vaste communauté d'experts.

La suite (un) est définie par
U0 = 0 et, pour tout entier
naturel n, Un+1= 1/2-u.
Démontrer par récurrence que, pour tout entier naturel:
n, Un= n/n+1


Sagot :

Réponse :

démontrer par récurrence que pour tout entier naturel n ;

  Un = n/(n+1)

1) initialisation :  pour n = 0 vérifions que P(0) est vraie

             U0 = 0/0+1 = 0    donc  P(n) est vraie

2) hérédité :  supposons que pour tout n de N;     Pn) est vraie c'est à dire     Un = n/(n+1) et montrons que P(n+1) est vraie c'est à dire Un+1 = (n + 1)/(n+2)

sachant que  Un+1 = 1/(2 - Un)  ⇔ Un+1 = 1/(2 - (n/(n+1)) = 1/(2(n+1) - n)/(n+1)

⇔ Un+1 = (n+1)/(n+2)  donc  P(n+1) est vraie

3) conclusion :  P(0) est vraie et par récurrence P(n) est vrai pour tout n de N

Explications étape par étape :

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.