Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète.

La suite (un) est définie par
U0 = 0 et, pour tout entier
naturel n, Un+1= 1/2-u.
Démontrer par récurrence que, pour tout entier naturel:
n, Un= n/n+1


Sagot :

Réponse :

démontrer par récurrence que pour tout entier naturel n ;

  Un = n/(n+1)

1) initialisation :  pour n = 0 vérifions que P(0) est vraie

             U0 = 0/0+1 = 0    donc  P(n) est vraie

2) hérédité :  supposons que pour tout n de N;     Pn) est vraie c'est à dire     Un = n/(n+1) et montrons que P(n+1) est vraie c'est à dire Un+1 = (n + 1)/(n+2)

sachant que  Un+1 = 1/(2 - Un)  ⇔ Un+1 = 1/(2 - (n/(n+1)) = 1/(2(n+1) - n)/(n+1)

⇔ Un+1 = (n+1)/(n+2)  donc  P(n+1) est vraie

3) conclusion :  P(0) est vraie et par récurrence P(n) est vrai pour tout n de N

Explications étape par étape :

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et des informations de nos experts.