Laurentvidal.fr est le meilleur endroit pour obtenir des réponses fiables et rapides à toutes vos questions. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Quelqu’un pourrait m’aider pour les deux dernière questions merci d’avance

Quelquun Pourrait Maider Pour Les Deux Dernière Questions Merci Davance class=

Sagot :

Réponse :

V(x) = 4 x³ - 84 x² + 432 x

4) pour quelle(s) valeur(s) de x, la contenance de la boite est-elle maximale ?

V'(x) = 12 x² - 168 x + 432

       = 12(x² - 14 x + 36)    ⇒ V'(x) = 0  ⇔ V'(x) = x² - 14 x + 36 = 0

Δ = 196 - 144 = 52  

x1 = 14 + √52)/2 ≈ 10.6 ∉ [0 ; 9]  donc à exclure

x2 = 14 - √52)/2 ≈ 3.39 ≈ 3.4  ∈ [0 ; 9]  donc c'est une solution de l'équation

tableau de signes et de variations de V' et V  sur  [0 ; 9]

          x                0                            3.4                  9

  signe de V'                       +              0           -

variations de V    0 →→→→→→→→→→ ≈ 655 →→→→→→→ 0

                                 croissante                décroissante

5) l'industriel peut-il construire une boite dont la contenance

est ≥ 650 cm³ ? Justifier

d'après le tableau de variation pour x = 3.4 cm; la boite a une contenance maximale de 655 cm³ environ  

donc   V(x) ≥ 650 cm³  ⇔ 4 x³ - 84 x² + 432 x ≥ 650

pour  x = 3.05 cm ⇒ 4*3.1³ - 84*3.1² + 432*3.1

= 119.164 - 807.24 + 1339.2 = 651. 124 > 650 cm³

donc l'industriel  peut construire des boites de contenance ≥ 650 cm³

avec      3.1 ≤ x ≤ 3.4    

Explications étape par étape :

Nous apprécions votre visite. Nous espérons que les réponses trouvées vous ont été bénéfiques. N'hésitez pas à revenir pour plus d'informations. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.