Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
Explications étape par étape :
Bonjour
1)
en admettant que MNPQ soit un carré, son aire A est égale à
B = L'aire du carré ABCD moins C l'aire de 4 fois des triangles MBN, NCP,PDQ et QAM
donc A = B - C
B=aire du carré ABCD est égal à 10 × 10 = 100
l'aire de chaque triangle est identique et est de la forme (b × h) /2 ou b = base et h = hauteur
C = Aire des 4 triangles = 4 ×((10 - x) × x) /2 avec b = 10 - x et h = x
C = 2 ( (10 - x) × x)
C = 2 ( 10 x - x²)
C = 20 x - 2x²
B=aire du carré ABCD est 10 × 10 = 100
donc A = B - C
A = 100 - (20 x - 2x²)
A = 100 - 20x + 2x²
A = 2x² - 20x + 100 = f(x)
2) l'ensemble de définitions de f(x) est [ 0;10] car les points M,N,P,Q appartiennent au segments [AB], [BC], [CD] et [DA] de longueurs égales à 10
3)
2x² - 20x + 100 = f(x)
f est une fonction dérivable sur [0,10]
donc f'(x) = 4x - 20
f' s'annule si 4x - 20 = 0
si 4x = 20
si x = 20/4
si x = 5
tableau de signe de f
x 0 5 10
4x - 20 - ⊕ +
f' - ⊕ +
f décroissante ⊕ croissante
donc la fonction f(x) a un minimum en x = 5
donc l'aire A = f(x) = 2x² - 20x + 100 qui est l'aire de MNPQ est minimale pour x = 5
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Revenez sur Laurentvidal.fr pour obtenir plus de connaissances et de réponses de nos experts.