Bienvenue sur Laurentvidal.fr, le site où vous trouverez des réponses rapides et précises à toutes vos questions. Obtenez des solutions rapides et fiables à vos questions grâce à des professionnels expérimentés sur notre plateforme de questions-réponses complète. Explorez des solutions complètes à vos questions grâce à une large gamme de professionnels sur notre plateforme conviviale.

Bonjour je galere sur mon exercice de math quelqu'un pourrai maider svp ?

On s’intéresse à l’évolution d’une population de tigres dans une réserve en naturelle.
En 2019, il y avait 100 tigres. Une étude à montré que chaque année, 10 % de la population de tigres meurt. En conséquence on introduit, chaque année, 5 nouveaux tigres à la
réserve. On note un le nombre de tigres en 2019 + n.
1) Déterminer le nombre de tigres dans la réserve en 2020.
2) Donner la valeur de u0 et justifier que pour tout n ∈ N, un+1 = 0, 9un + 5.
3) On pose vn = un − 50
a) Montrer que (vn) est géométrique dont on précisera la raison et le premier terme.
b) Déterminer l’expression de vn puis de un en fonction de n.
c) En déduire la limite de la suite (un).
d) Interpréter dans le contexte les variations et la limites de la suite (un)


Sagot :

Réponse :

Explications étape par étape :

View image olivierronat

Réponse :

Explications étape par étape :

■ "10 % des tigres meurent"

   --> coefficient = 1 - 0,1o = 0,9o

   --> "0,9" dans l' expression de Un+1

■ "5 nouveaux tigres"

   --> "+5" dans l' expression de Un+1

■ tableau-résumé :

   les nb de tigres sont arrondis à l' entier !

   année --> 2o19   2o20   2o21   2o22   2o23

         Un --> 100       95       91        87        83 tigres

         Vn -->  50        45       41        37        33

■ 3a) :

  Vn = Un - 50 = 0,9Un-1 + 5 - 50

                        = 0,9Un-1 - 45

                        = 0,9 (Un-1 - 50)

                        = 0,9 Vn-1 .

  La suite (Vn) est donc bien une suite géométrique

                  de raison 0,9 et de terme initial Vo = 50 .

■ 3b) :

   Vn = Vo x 0,9^n = 50 x 0,9^n

  donc Un = 50 x 0,9^n + 50 = 50 (0,9^n + 1) .

  vérif : Uo = 100 ; U1 = 95 ; U2 = 40,5 ≈ 41 ; ...

■ 3c) limites :

  LimVn = 0 puisque la raison positive est inférieure à 1

  donc LimUn = 50 ( tigres ) .

  autre méthode :

  Un+1 = 0,9Un + 5 donne

    Lim = 0,9 Lim + 5 donne 0,1 Lim = 5

                                                   Lim = 50 .

■ 3d) interprétation :

  dès que le nb de tigres sera de 50 , on aura 10%

  de tigres qui meurent ( soit 5 tigres ) --> il en resterait

  donc 45 , mais on ajoute 5 nouveaux tigres

  --> il y aura donc encore 45 + 5 = 50 tigres !

■ 3e) en quelle année aura-t-on 50 tigres ?

  on doit résoudre 50 x 0,9^n + 50 ≈ 50,5

                                        50 x 0,9^n ≈ 0,5

                                                 0,9^n ≈ 0,01

                                                        n ≈ Log0,01 / Log0,9

                                                        n ≈ 43,7

   on retient n = 44 --> année = 2o19 + 44 = 2o63

   vérif : U43 = 50 x 0,9^43 + 50 ≈ 50,54 --> 51 tigres !

             U44 = 50 x 0,9^44 + 50 ≈ 50,48 --> 50 tigres !

Revenez nous voir pour des réponses mises à jour et fiables. Nous sommes toujours prêts à vous aider avec vos besoins en information. Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Merci de faire confiance à Laurentvidal.fr. Revenez pour obtenir plus d'informations et de réponses.