Obtenez les meilleures solutions à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés. Rejoignez notre plateforme de questions-réponses pour vous connecter avec des experts dédiés à fournir des réponses précises à vos questions dans divers domaines.

Bonjour, je bloque sur la récurrence, et j’espère que vous pourrez m’aider.

On considère la suite (un) défini pour tout entier naturel par un+1= un+2n+3 et u0= 1
Démonter par récurrence que un=(n+1)^2

Merci.


Sagot :

Tenurf

Bonjour,

Nous allons démontrer par récurrence que la proposition suivante est vraie

pour tout n entier, [tex]u_n=(n+1)^2[/tex]

Etape 1 - Initialisation

pour n = 0 [tex]u_0=1[/tex]

et [tex](0+1)^2=1^2=1[/tex]

Donc c'est vrai au rang 0

Etape 2 - Supposons que cela soit vrai au rang p et démontrons alors que cela reste vrai au rang p+1

Hypothese de Récurrence est [tex]u_p=(p+1)^2[/tex]

et nous devons montrer que [tex]u_{p+1}=((p+1)+1)^2=(p+2)^2[/tex]

Nous savons que

[tex]u_{p+1}=u_p+2p+3[/tex]

Utilisons l'hypothèse de récurrence [tex]u_p=(p+1)^2[/tex]

cela donne

[tex]u_{p+1}=(p+1)^2+2p+3[/tex]

Développons

[tex]u_{p+1}=(p+1)^2+2p+3=p^2+2p+1+2p+3=p^2+4p+4=(p+2)^2[/tex]

donc cela reste vrai au rang p+1

Etape 3 - conclusion

Nous venons donc de démontrer par récurrence que la proposition suivante est vraie

pour tout n entier, [tex]u_n=(n+1)^2[/tex]

Merci

Réponse :

Explications étape par étape :

■ Un+1 = Un + 2n+3 avec Uo = 1

■ U1 = 4 ; U2 = 9 ; U3 = 16 ; ...

 

■ ■ démo par récurrence :

Un+1 = Un + 2n+3 or on souhaite Un = (n+1)²

donc Un+1 = (n+1)² + 2n+3

                  = n²+2n+1 + 2n+3

                  = n² + 4n + 4 .

or on a aussi Un+1 = (n+1 + 1)² = (n+2)² = n² + 4n + 4 .

■ ■ ■ conclusion :

on a bien Un = (n+1)² .

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Merci d'avoir visité Laurentvidal.fr. Revenez bientôt pour plus d'informations utiles et des réponses de nos experts.