Laurentvidal.fr est là pour vous fournir des réponses précises à toutes vos questions avec l'aide de notre communauté experte. Rejoignez notre plateforme de questions-réponses pour obtenir des réponses précises à toutes vos interrogations de la part de professionnels de différents domaines. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

Bonjour, j’aurais besoin d’aide pour un exercice que je comprends pas. Je dois le rendre aujourd’hui. Merci :)

Bonjour Jaurais Besoin Daide Pour Un Exercice Que Je Comprends Pas Je Dois Le Rendre Aujourdhui Merci class=

Sagot :

Réponse :

d ≡ {x = 2 k - 3

     {y = - k + 5         k ∈ R

a) déterminer les coordonnées d'un point B appartenant à cette droite

      pour  k = 0   ⇒  x = - 3  et  y = 5    donc   B(- 3 ; 5)

b) rechercher les points d'intersection de d avec les axes de coordonnées

 axe des abscisses : pour  y = 0   ⇒  - k + 5 = 0  ⇔ k = 5

                x = 2 k - 3   ⇔ x = 2*5 - 3 = 7

           le point d'intersection de d avec l'axe des abscisse  est de coordonnées  (7 ; 0)

avec l'axe des ordonnées  ⇒ x = 0  ⇒ 2 k - 3 = 0  ⇔ k = 3/2

       y = - k + 5  ⇔ y = - 3/2 + 5  ⇔ y = - 3/2 + 10/2 = 7/2

         (0 ; 7/2)

c) déterminer l'équation cartésienne réduite de la droite d

      x = 2 k - 3  ⇔  2 k = x + 3   ⇔ k = (x + 3)/2

      y = - k + 5   ⇔ k = - y + 5

⇔  - y + 5 = (x + 3)/2  ⇔ y = - (x + 3)/2 + 5  ⇔ y = - x/2  - 3/2 + 10/2

d'où   y = - 1/2) x + 7/2

4) donner une équation cartésienne de la droite p  perpendiculaire à d et passant par le point A(1/2 ; - 2/3) en détaillant toutes les étapes de calcul

soit l'équation cartésienne de d :  - 1/2) x - y + 7/2 = 0  ⇔ - x - 2 y + 7 = 0

a pour vecteur directeur  u (2 ; - 1)

soit  M(x ; y)  tel que le produit scalaire AM.u = 0  ⇔ XX' + YY' = 0

vec(AM) = (x - 1/2 ; y + 2/3)

2*(x - 1/2) + (- 1)(y + 2/3) = 0  ⇔ 2 x - 1 - y - 2/3 = 0  ⇔ 2 x - y - 5/3 = 0

⇔ 6 x - 3 y - 5 = 0  équation cartésienne de la droite p

e) donner le coefficient angulaire de la droite p et en déduire l'angle qu'elle forme avec l'axe des abscisses

  coefficient angulaire = 2

l'angle que forme la droite p avec l'axe des abscisses

   tanα = Δy/Δx     tu peux le faire; prendre deux de la droite  (5/6 ; 0) et

(2.5 ; 10/3)    tan α = 10/3/(2.5 - 5/6) = .................

ensuite   α = arctan (     ) = ..................

Explications étape par étape :

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous sommes fiers de fournir des réponses sur Laurentvidal.fr. Revenez nous voir pour plus d'informations.