Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Notre plateforme offre une expérience continue pour trouver des réponses précises grâce à un réseau de professionnels expérimentés. Explorez des milliers de questions et réponses fournies par une large gamme d'experts dans divers domaines sur notre plateforme de questions-réponses.

bonsoir. pourriez-vous m'aider à résoudre cette inéquation svp. je pense qu'il faut utiliser un tableau de signe.
merci d'avance.


Bonsoir Pourriezvous Maider À Résoudre Cette Inéquation Svp Je Pense Quil Faut Utiliser Un Tableau De Signemerci Davance class=

Sagot :

Réponse:

bonsoir,

je n'est pas réussi à l'écrire ici alors j'ai pris un screenshots.

Bonne soirée à vous.

View image avalehmann92

bjr

ensemble de définition

x - 1  ≠ 0   et x - 2 ≠ 0

x ≠ 1               x ≠ 2

D = R - {1 ; 2}

on transpose le second membre dans le premier

1/(x - 1) < (x + 1)/(x - 2)                équivaut à

1/(x - 1) - (x + 1)/(x - 2)  < 0            (on réduit au même dénominateur)

(x - 2) / (x - 1)(x - 2)  -  (x + 1)(x - 1) / (x - 1)(x - 2) < 0

[ (x - 2) - (x + 1)x - 1) ] / (x - 1)(x - 2) < 0

(x - 2 - x² + 1) / (x - 1)(x - 2) < 0

(-x² + x - 1) / (x - 1)(x - 2) < 0  (on multiplie les deux membres par (-1),

                                                 l'inéquation change de sens)

x² - x + 1) / (x - 1)(x - 2) > 0

on étudie le signe du premier membre

• x² - x + 1               (racines de ce trinôme)

Δ = b²− 4ac = (-1)² - 4*1*1 = 1 - 4 = −3

le discriminant est négatif, le trinôme n'a pas de racines réelles

il a toujours le signe du coefficient de x², soit "+"

on cherche les valeurs qui rendent le dénominateur positif

• (x - 1)(x - 2)    admet deux racines : 1 et 2

le coefficient de x² est positif

(x - 1)(x - 2) est positif pour les valeurs extérieures aux racines

S = ]-∞ ; 1[ U ]2 ; + ∞[

Merci de nous avoir fait confiance pour vos questions. Nous sommes ici pour vous aider à trouver des réponses précises rapidement. Merci d'utiliser notre service. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Merci d'utiliser Laurentvidal.fr. Continuez à nous rendre visite pour trouver des réponses à vos questions.