Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Explorez notre plateforme de questions-réponses pour trouver des solutions fiables grâce à une large gamme d'experts dans divers domaines. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.

Bonjour, j'aurai besoin d'aide sur cet exercice de mathématique niveau terminale, car je ne comprend pas ce qu'il faut faire.

Soit (a, b, m, n) ∈ Z⁴ avec m et n ⩾ 2 tels que m ∧ n = 1 (PGCD(m, n) = 1). On considère une relation de Bézout mu + nv = 1.
On cherche les entiers x tels que x ≡ a [m] et x ≡ b [n].

Question :

(1) Vérifier que l’entier x₀ = bmu + anv convient.

(2) Démontrer qu’un entier x convient si, et seulement si, x ≡ x₀ [mn].

(3) Application numérique.
(a) Déterminer les entiers x tels que x ≡ 2 [3] et x ≡ 3 [5].

(b) En déduire les entiers x tels que x ≡ 2 [3], x ≡ 3 [5] et x ≡ 2 [7], puis donner la plus petite solution positive.