Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Rejoignez notre plateforme de questions-réponses pour obtenir des informations précises d'experts dans divers domaines. Découvrez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme conviviale de questions-réponses.

Bonjour, voici l'énoncé et la solution de l'exercice concerné. Je ne comprends pas sur quelle propriété des polynômes repose la correction.

Merci de vos réponses.


Bonjour Voici Lénoncé Et La Solution De Lexercice Concerné Je Ne Comprends Pas Sur Quelle Propriété Des Polynômes Repose La Correction Merci De Vos Réponses class=

Sagot :

Bonsoir,

L'objectif est de trouver l'unique fonction polynomiale f de degré 2 telle que f(0) = 3, f(-2) = 1 et f(2) = -1.

Donc d'abord, on définit f comme une fonction du second degré avec des coefficients à déterminer (a, b et c): f(x) = ax² + bx + c.

Ensuite, cela doit respecter les conditions sur f donnée par l'énoncé:

f(0) = c = 3 (1)

f(-2) = 4a - 2b + c = 1 (2)

f(2) = 4a + 2b + c = -1 (3)

Tu reconnais ici, le système donné dans la correction.

Il ne reste plus qu'à résoudre le système en faisant des opérations sur les lignes.

En substituant la (1) dans la (2) et la (3):

c = 3 (1)

4a - 2b = -2 (2)

4a + 2b = -4 (3)

La correction a fait une division par 2 pour les équations (2) et (3) pour alléger:

c = 3 (1)

2a - b = -1 (2)

2a + b = -2 (3)

En faisant, (2) + (3): 4a = -3.

Donc a = -3/4.

En substituant la valeur de a dans l'équation (2) ou (3):

b = 2a + 1 = -3/2 + 1 = -1/2

Finalement, f(x) = -3/4x² - 1/2x + 3.

Tu peux vérifier en calculant f(0), f(-2) et f(2), c'est tout bon.

Bonne soirée.

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.