Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Explorez des réponses détaillées à vos questions de la part d'une communauté d'experts dans divers domaines. Posez vos questions et recevez des réponses détaillées de professionnels ayant une vaste expérience dans divers domaines.

Bonjour, voici l'énoncé et la solution de l'exercice concerné. Je ne comprends pas sur quelle propriété des polynômes repose la correction.

Merci de vos réponses.


Bonjour Voici Lénoncé Et La Solution De Lexercice Concerné Je Ne Comprends Pas Sur Quelle Propriété Des Polynômes Repose La Correction Merci De Vos Réponses class=

Sagot :

Bonsoir,

L'objectif est de trouver l'unique fonction polynomiale f de degré 2 telle que f(0) = 3, f(-2) = 1 et f(2) = -1.

Donc d'abord, on définit f comme une fonction du second degré avec des coefficients à déterminer (a, b et c): f(x) = ax² + bx + c.

Ensuite, cela doit respecter les conditions sur f donnée par l'énoncé:

f(0) = c = 3 (1)

f(-2) = 4a - 2b + c = 1 (2)

f(2) = 4a + 2b + c = -1 (3)

Tu reconnais ici, le système donné dans la correction.

Il ne reste plus qu'à résoudre le système en faisant des opérations sur les lignes.

En substituant la (1) dans la (2) et la (3):

c = 3 (1)

4a - 2b = -2 (2)

4a + 2b = -4 (3)

La correction a fait une division par 2 pour les équations (2) et (3) pour alléger:

c = 3 (1)

2a - b = -1 (2)

2a + b = -2 (3)

En faisant, (2) + (3): 4a = -3.

Donc a = -3/4.

En substituant la valeur de a dans l'équation (2) ou (3):

b = 2a + 1 = -3/2 + 1 = -1/2

Finalement, f(x) = -3/4x² - 1/2x + 3.

Tu peux vérifier en calculant f(0), f(-2) et f(2), c'est tout bon.

Bonne soirée.

Merci d'utiliser notre plateforme. Nous nous efforçons de fournir des réponses précises et à jour à toutes vos questions. Revenez bientôt. Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Votre connaissance est précieuse. Revenez sur Laurentvidal.fr pour obtenir plus de réponses et d'informations.