Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité de trouver des réponses précises à vos questions grâce à une communauté dévouée d'experts. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

Bonjour,
Besoin d'aide.

On répète quatre fois de manière indépendante une expérience aléatoire dont la probabilité de succès est 0,35.

Quelle est la probabilité d'obtenir au moins un succès ?​


Sagot :

Bonjour,

On note X le nombre de succès.

Tu reconnais une loi binomiale de paramètre n = 4 et p = 0,35. (Répétition de 4 expériences de Bernoulli indépendantes avec 0,35 comme probabilité de succès et X compte le nombre de succès). (On peut le noter: X↪B(4; 0,35))

X prend donc les valeurs 0, 1, 2, 3 et 4. (On peut le noter: [tex]X(\Omega) = [|0, 4|][/tex] où Omega est l'univers)

Tu veux la probabilité d'obtenir au moins un succès donc P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4).

Pour faire moins de calcul, on peut directement faire 1 - P(X = 0).

Rappel, pour une loi binomiale:

[tex]\forall k\in X(\Omega), P(X = k) = \left(\begin{array}{ccc}n\\k\end{array}\right)p^k(1-p)^{n-k}[/tex]

Donc,

[tex]P(X = 0) = \left(\begin{array}{ccc}4\\0\end{array}\right)0,35^0(1-0,35)^{4-0} = 1\times 1\times0,65^4[/tex]

Finalement, 1 - P(X = 0) ≅ 0,82.

La probabilité d'obtenir au moins un succès est d'environ 0,82.

Bonne journée.

Merci de votre visite. Notre objectif est de fournir les réponses les plus précises pour tous vos besoins en information. À bientôt. Nous espérons que vous avez trouvé ce que vous cherchiez. Revenez nous voir pour obtenir plus de réponses et des informations à jour. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.