Trouvez des réponses rapides et précises à toutes vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez une mine de connaissances de professionnels dans différentes disciplines sur notre plateforme de questions-réponses complète. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Bonjour pouvez vous m’aider avec cet exercice svp ? Merci infiniment !

Bonjour Pouvez Vous Maider Avec Cet Exercice Svp Merci Infiniment class=

Sagot :

Réponse :

déterminer le domaine de définition et les racines des fonctions suivantes :

a)  f(x) = (6 x² + 5 x - 1)/(x² + 2 x + 1)

         = (6 x² + 5 x - 1)/(x + 1)²         il faut que  x + 1 ≠ 0  ⇔ x ≠ - 1

Domaine de définition de f  est :  Df = R \{- 1}

f(x) = 0  ⇔  6 x² + 5 x - 1 = 0

Δ = 25 + 24 = 49 > 0  ⇒ 2 racines distinctes

x1 = - 5 + 7)/12 = 2/12 = 1/6

x2 = - 5-7)/12 = - 1

b) f(x) = (√(2 - 3 x))/∛(x² - 1)

il faut que  2 - 3 x ≥ 0  ⇔  - 3 x ≥ 2  ⇔ x ≤ - 2/3    ⇔ ]- ∞ ; - 2/3]

il faut aussi que  x² - 1 ≠ 0  ⇔ x ≠ - 1  et  x ≠ 1

  Df = ]- ∞ ; - 1[U]- 1 ; - 2/3]

f(x) = 0  ⇔ √(2 - 3 x) = 0   ⇔ 2 - 3 x = 0  ⇔ x = 2/3

c) f(x) = (x² - x + 6)/√(3 x + 1)

il faut que 3 x + 1 > 0  ⇔ 3 x > - 1  ⇔ x > - 1/3   donc  Df = ]- 1/3 ; + ∞[

f(x) = 0  ⇔ x² - x + 6 = 0

Δ = 1 - 24 = - 23 < 0 pas de racines

d) f(x) = 4 x²/(2 x² + 6 x)

il faut que 2 x² + 6 x ≠ 0  ⇔ 2 x(x + 3) ≠ 0  ⇔  x ≠ 0  et  x ≠ - 3

      Df = R\{- 3 ; 0}

f(x) = 0  ⇔ 4 x² = 0  ⇔  x = 0  or   x ≠ 0  donc  pas de solution

Explications étape par étape :

Merci d'avoir visité notre plateforme. Nous espérons que vous avez trouvé les réponses que vous cherchiez. Revenez quand vous voulez. Nous apprécions votre temps. Revenez nous voir pour des réponses fiables à toutes vos questions. Revenez sur Laurentvidal.fr pour obtenir les réponses les plus récentes et les informations de nos experts.