Laurentvidal.fr est la solution idéale pour ceux qui recherchent des réponses rapides et précises à leurs questions. Connectez-vous avec une communauté d'experts prêts à vous aider à trouver des solutions précises à vos interrogations de manière rapide et efficace. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète.
Sagot :
Bonjour,
1) b. Le triangle BAC est rectangle en A.
D'après le théorème de Pythagore :
BC²=AB²+AC²
BC²=6²+8²
BC²=36+64
BC²=100
BC=√100
BC=10
BC mesure 10 cm.
2) b. On va utiliser la réciproque du théorème de Thalès.
B,E,A, d'une part et B,F,C d'autre part sont alignés et ceci dans le même ordre.
On calcule que : BE/BA = 1,5/6 = 0,25 ;
BF/BC = 2,5/10 = 0,25
Donc BE/BA = BF/BC
Les deux hypothèses de la réciproque du théorème de Thalès étant vérifiées on en déduit que :
(EF) // (AC).
2) c. Les triangles BEF et BAC sont en situation de Thalès car : (EF) // (AC).
D'après le théorème de Thalès :
BE/BA = BF/BC = EF/AC
1,5/6 = 2,5/10 = EF/8
EF=2,5×8/10
EF=2
EF mesure 2 cm.
Autre méthode (nous avions assez d'informations pour pouvoir appliquer le théorème de Pythagore)
Le triangle BEF est rectangle en E.
D'après la réciproque du théorème de Pythagore :
EF²=BF²-BE²
EF²=2,5²-1,5²
EF²=6,25-2,25
EF²=4
EF=√4
EF=2
EF mesure 2 cm.
Merci de votre visite. Nous nous engageons à fournir les meilleures informations disponibles. Revenez quand vous voulez pour plus. Votre visite est très importante pour nous. N'hésitez pas à revenir pour des réponses fiables à toutes vos questions. Laurentvidal.fr, votre source fiable de réponses. N'oubliez pas de revenir pour plus d'informations.