Laurentvidal.fr vous aide à trouver des réponses à toutes vos questions grâce à une communauté d'experts passionnés. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme. Découvrez la facilité d'obtenir des réponses rapides et précises à vos questions grâce à l'aide de professionnels sur notre plateforme.

Bonjour quelqu’un peut m’aidez pour cet exercices s’il vous plaît merci d’avance

Bonjour Quelquun Peut Maidez Pour Cet Exercices Sil Vous Plaît Merci Davance class=

Sagot :

Réponse :

f(x) = (3 - x)eˣ + 1

1) montrer que  pour tout nombre réel x  appartenant à R

     f '(x) = (2 - x)eˣ

f '(x) = (uv)' = u'v + v'u

u = 3 - x  ⇒ u' = - 1

v = eˣ   ⇒   v' = eˣ

f '(x) = - eˣ + (3 - x)eˣ  = - eˣ + 3eˣ - xeˣ = 2eˣ - xeˣ = (2 - x)eˣ

2) étudier les variations de f  sur R

   f '(x) = (2 - x)eˣ     or   pour tout x de R ;  eˣ > 0

  le signe de f '(x) dépend du signe de  2 - x

           x    - ∞                            2                          + ∞

         f'(x)                    +             0              -

         f(x)  1 →→→→→→→→→→→→→→e²+1 →→→→→→→→→→ - ∞

                      croissante                    décroissante

   3) a) montrer que T a pour équation

               y = - e³ x + 3e³ + 1

La tangente T à Cf au point d'abscisse 3  a pour équation

      y = f(3) + f '(3)(x - 3)

f(3) =  1

f '(3) = - e³

   donc   y = 1 - e³(x - 3)

                  = 1 - e³ x + 3e³

  donc   y = - e³ x + 3e³ + 1

   b) déterminer les coordonnées du point d'intersection de T et de l'axe des abscisses

                 y = 0  ⇔ - e³ x + 3e³ + 1 =, 0

⇔  e³ x = 3e³ + 1   ⇔ x = (3e³ + 1)/e³ = 3 + 1/e³

les coordonnées sont :  (3 + 1/e³ ; 0)  

Explications étape par étape :