Laurentvidal.fr vous aide à trouver des réponses fiables à toutes vos questions grâce à une communauté d'experts. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

bonjour est ce que quelqu'un pourrait m'aider pour cet exercice SVP​

Bonjour Est Ce Que Quelquun Pourrait Maider Pour Cet Exercice SVP class=

Sagot :

Réponse :

soit  x ∈ R

on pose  A = √(x²+1) - |x|   et   B = √(x²+1) + |x|

1) Montrer que :  A > 0  et en déduire que :   B > 2|x|

A = √(x²+1) - |x|   ⇔  A = [(√(x²+1) - |x|)(√(x²+1) + |x|)]/(√(x²+1) + |x|)

                                    = [(x² + 1) - |x|*|x|]/(√(x²+1) + |x|)  

or  |x|*|x| = |x*x| = |x²| = x²  car un carré est positif

donc  A = (x² + 1 - x²)/(√(x²+1) + |x|)  ⇔ A = 1/(√(x²+1) + |x|)  

or  (√(x²+1) + |x|)  > 0  et  1 > 0  donc  A = 1/(√(x²+1) + |x|) > 0

donc  A > 0

en déduire que B > 2|x|

A > 0  ⇔  √(x²+1) - |x| > 0  ⇔ √(x²+1) > |x|   ⇔ √(x²+1) + |x| > |x| + |x|  car |x| >0

⇔  √(x²+1) + |x| > 2|x|   ⇔ B > 2|x|

2) calculer AB

     AB = (√(x²+1) - |x|)*( √(x²+1) + |x|) = x² + 1 - x² = 1  ⇒ AB = 1

en déduire que A < 1/2|x|  pour  x ≠ 0

    AB = 1  ⇔ A = 1/B   et   sachant que  B > 2|x|   ⇔ 1/B < 1/2|x|

donc  A < 1/2|x|

3) démontrer que pour tout x ≠ 0

     |x| < √(x²+1) < |x| + 1/2|x|

    A < 1/2|x|  ⇔ √(x² + 1) - |x| < 1/2|x|  ⇔  √(x² + 1) - |x| + |x| < |x| + 1/2|x|    

⇔   √(x² + 1) < |x| + 1/2|x|  

   B > 2|x|  ⇔   √(x² + 1) + |x| > 2|x|  ⇔ √(x² + 1) + |x| - |x| > 2|x| - |x|

⇔ √(x² + 1) > |x|

donc   on a bien   |x| < √(x²+1) < |x| + 1/2|x|

Explications étape par étape :

Merci d'utiliser notre plateforme. Nous sommes toujours là pour fournir des réponses précises et à jour à toutes vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr est là pour fournir des réponses précises à vos questions. Revenez bientôt pour plus d'informations.