Découvrez les réponses à vos questions facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Obtenez des réponses rapides à vos questions grâce à un réseau de professionnels expérimentés sur notre plateforme de questions-réponses. Explorez notre plateforme de questions-réponses pour trouver des réponses détaillées fournies par une large gamme d'experts dans divers domaines.

Bonjour,j’ai besoin de vous pour les trois dernières questions je ne sais pas comment faire,merci

Bonjourjai Besoin De Vous Pour Les Trois Dernières Questions Je Ne Sais Pas Comment Fairemerci class=

Sagot :

Réponse :

1) calculer les coordonnées des vecteurs AC , FB , EA , ED

déterminons tout d'abord les coordonnées du points D

pour que ABCD soit un parallélogramme

les diagonales AC et BD se coupent au même milieu

Coordonnées du milieu de (AC) : (3 ; 3/2)

coordonnées du milieu de (BD) ; ((x+1)/2 ; (y + 11/2)/2)

(x+1)/2 = 3  ⇔ x = 5   et  y + 11/2)/2 = 3/2  ⇔ y = - 5/2

D(5 ; - 5/2)

vec(AC) = (2 ; 1)

vec(FB) = (3 ; 3/2)

vec(EA) = (13/2 ; 7/2)

vec(ED) = (19/2 ; 0)

2) citer les vecteurs colinéaires entre eux   justifier

vec(AC) = (2 ; 1) = 2(1 ; 1/2)  ⇒ (1 ; 1/2) = vec(AC)/2

vec(FB) = (3 ; 3/2) = 3(1 ; 1/2)   ⇒ (1 ; 1/2) = vec(FB)/3

Donc vec(FB)/3 = vec(AC)/2  ⇔  vec(FB) = 3/2vec(AC)

donc les vecteurs AC et FB sont colinéaires

3) calculer les coordonnées du vecteur u = AB + AC

 vec(AB) = (1 - 2 ; 11/2 - 1) = (- 1 ; 9/2)

 vec(AC) = (2 ; 1)

  vec(u) = (- 1 ; 9/2) + (2 ; 1) = (- 1 + 2 ; 9/2 + 1) = (1 ; 11/2)

4) calculer les coordonnées du point N tel que vec(AN) = vec(u)

     soit  N(x ; y)  

     vec(AN) = (x - 2 ; y - 1) = (1 ; 11/2)

    x - 2 = 1   ⇔ x = 3  et y - 1 = 11/2   ⇔ y = 11/2 + 1 = 13/2

 N(3 ; 13/2)

Explications étape par étape :

Merci d'avoir choisi notre plateforme. Nous nous engageons à fournir les meilleures réponses à toutes vos questions. Revenez nous voir. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Laurentvidal.fr, votre site de confiance pour des réponses. N'oubliez pas de revenir pour plus d'informations.