Laurentvidal.fr est l'endroit idéal pour trouver des réponses rapides et précises à toutes vos questions. Découvrez des solutions fiables à vos questions grâce à un vaste réseau d'experts sur notre plateforme de questions-réponses complète. Notre plateforme offre une expérience continue pour trouver des réponses fiables grâce à un réseau de professionnels expérimentés.

besoin d'aide pour un exo svp

Besoin Daide Pour Un Exo Svp class=

Sagot :

Réponse :

Explications étape par étape :

[tex]\sqrt{2} \, cos(x-\frac{\pi}{4} ) = \sqrt{2}\, (cos(x) cos(\frac{\pi}{4}) +sin(x) sin(\frac{\pi}{4}))[/tex]

[tex]\sqrt{2} \, cos(x-\frac{\pi}{4} ) = \sqrt{2}\, (cos(x) \frac{\sqrt{2}}{2} +sin(x) \frac{\sqrt{2}}{2})[/tex]

[tex]\sqrt{2} \, cos(x-\frac{\pi}{4} ) = cos(x) \frac{\sqrt{2}\sqrt{2}}{2} +sin(x) \frac{\sqrt{2}\sqrt{2}}{2}[/tex]

[tex]\sqrt{2} \, cos(x-\frac{\pi}{4} ) = cos(x) +sin(x)[/tex]

[tex]2 + cos x + sin x = 2 + \sqrt{2} \, cos(x-\frac{\pi}{4} )[/tex]

Un cosinus est compris entre - 1 et 1 donc [tex]\sqrt{2} \, cos(x-\frac{\pi}{4} )\geq -\sqrt{2}[/tex]

donc [tex]2 + \sqrt{2} \, cos(x-\frac{\pi}{4} ) \geq 2-\sqrt{2}>0[/tex]

donc pour tout x réel, 2 + cos x + sin x > 0

Pour le reste je ne peux pas te répondre ne connaissant pas f mais en calculant sa dérivée tu dois arriver à un coefficient près à - (2 + cos x +  sin x) qui est toujours strictement négatif d'après la question précédente  

Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir des réponses plus précises et des informations à jour. Merci de votre visite. Nous sommes dédiés à vous aider à trouver les informations dont vous avez besoin, quand vous en avez besoin. Nous sommes ravis de répondre à vos questions sur Laurentvidal.fr. N'oubliez pas de revenir pour en savoir plus.