Bienvenue sur Laurentvidal.fr, le site où vous trouverez les meilleures réponses de la part des experts. Rejoignez notre plateforme pour vous connecter avec des experts prêts à fournir des réponses détaillées à vos questions dans divers domaines. Obtenez des réponses immédiates et fiables à vos questions grâce à une communauté d'experts expérimentés sur notre plateforme.
Sagot :
Réponse :
soient a , b ∈ R tels que : |(3 a - 11)/(a - 2)| < 2 et |(2 b - 3)/(b+1) - 5| < 1
1) montrer que : 3 < a < 7 et - 6 < b < - 2
|(3 a - 11)/(a - 2)| < 2 on pose A = (3 a - 11)/(a - 2)
si A > 0 alors (3 a - 11)/(a - 2) < 2 ⇔ 3 a - 11 < 2(a - 2)
⇔ 3 a - 11 < 2 a - 4 ⇔ 3 a - 2 a < - 4 +11 ⇔ a < 7
si A < 0 alors - (3 a - 11)/(a - 2) < 2 ⇔ - 3 a + 11 < 2 a - 4
⇔ - 5 a < - 15 ⇔ a > 15/5 ⇔ a > 3
donc on a bien 3 < a < 7
|(2 b - 3)/(b+1) - 5| < 1 ⇔ |(- 8 - 3 b)/(b+1)| < 1 on pose B = (- 8 - 3 b)/(b+1)
si B > 0 alors (- 8 - 3 b)/(b+1) < 1 ⇔ - 8 - 3 b < b + 1 ⇔ - 4 b < 9
⇔ b > - 9/4 > - 6 donc b > - 6
si B < 0 alors - (- 8 - 3 b)/(b+1) < 1 ⇔ 8 + 3 b < b + 1 ⇔ 2 b < - 7
⇔ b < - 7/2 < - 2 donc b < - 2
donc on obtient - 6 < b < - 2
2) encadrer les nombres a + b + 1 et ab
3 < a < 7
- 6 < b < - 2
.................................
3 - 6 < a + b < 7 - 2 ⇔ - 3 < a + b < 5 ⇔ 1 - 3 < a + b + 1 < 5 + 1
⇔ - 2 < a + b + 1 < 6
3 < a < 7
- 6 < b < - 2
.............................
3 x - 6 < a x b < 7 x - 2 ⇔ - 18 < ab < - 14
3) en déduire une comparaison des deux nombres
2 a + b et √(3 a² + b² + 3 ab)
3 < a < 7 ⇔ 6 < 2 a < 14
- 6 < b < - 2 ⇔ - 6 < b < - 2
............................
0 < 2 a + b < 12
3 < a < 7 ⇔ 3² < a² < 7² ⇔ 27 < 3 a² < 149
- 6 < b < - 2 ⇔ (- 6)² < b² < (- 2)² ⇔ 2 < b² < 36
- 18 < ab < - 14 ⇔ - 54 < 3 ab < - 42
2 < b² < 36
- 54 < 3 ab < - 42
....................................
- 52 < b² + 3 ab < - 6
27 < 3 a² < 149
...................................
- 25 < 3 a² + b² + 3 ab < 143
Explications étape par étape :
Nous espérons que cela vous a été utile. Revenez quand vous voulez pour obtenir plus d'informations ou des réponses à vos questions. Nous apprécions votre visite. Notre plateforme est toujours là pour offrir des réponses précises et fiables. Revenez quand vous voulez. Laurentvidal.fr, votre site de référence pour des réponses précises. N'oubliez pas de revenir pour en savoir plus.