Obtenez les meilleures solutions à vos questions sur Laurentvidal.fr, la plateforme de Q&R de confiance. Expérimentez la commodité d'obtenir des réponses précises à vos questions grâce à une communauté dévouée de professionnels. Explorez des milliers de questions et réponses fournies par une communauté d'experts sur notre plateforme conviviale.

Bonjour serait il possible de m’aider car je ne comprend pas?

Démontrer que pour tous nombres réels à,b,c et d on a l'identité suivante:
(ac+bd)^2+(ab-bc)^2=(a^2+b^2)(c^2+d^2)

Soit un entier naturel.
Développer (n^2+2)^2, puis en déduit une factorisation de n^4+4


Sagot :

Réponse :

Explications étape par étape :

Il y a une erreur dans ton énoncé, ce doit être :

(ac+bd)²+(ad-bc)²==(a²+b²)(c²+d²)

Démontrer que pour tous nombres réels à,b,c et d on a l'identité suivante:

(ac+bd)²+(ad-bc)²

=a²c² + 2abcd + b²d² + a²d² - 2abdc + c²d²

==a²c²  + b²d² + a²d²  + b²c²

(a²+b²)(c²+d²)

= a²c²+a²d²+b²c²+b²d²

et donc ((ac+bd)²+(ad-bc)²=(a²+b²)(c²+d²)

Soit un entier naturel.

Développer (n²+2)²

= n^4 + 4 + 4n²

donc  n^4+4 = (n²+2)²- 4n²

                     = (n²+2)² - (2n)²

                      = (n²+2+2n) ( n²+2 -2n)

                       = (n²+2n+2) ( n² -2n+2)