Obtenez des solutions à vos questions sur Laurentvidal.fr, la plateforme de questions-réponses la plus réactive et fiable. Découvrez la facilité de trouver des réponses fiables à vos questions grâce à une vaste communauté d'experts. Découvrez des solutions complètes à vos questions grâce à des professionnels expérimentés sur notre plateforme conviviale.
Sagot :
Réponse :
ex3
1) représenter les vecteurs u(3 ; 2) et v(- 3 ; 4) dans la base (i ; j)
vec(u) = 3 i + 2 j (i et j sont des vecteurs)
vec(v) = - 3 i + 4 j
2) déterminer les coordonnées des points M et N tels que :
a) vec(AM) = vec(u)
soit M(x ; y) tel que vec(AM) = (x - 3 ; y - 3) = vec(u) = (3 ; 2)
⇔ x - 3 = 3 ⇔ x = 6 et y - 3 = 2 ⇔ y = 5
donc les coordonnées de M sont : (6 ; 5)
b) vec(BN) = vec(v)
soit N(x ; y) tel que vec(AN) = (x + 2 ; y - 1) = vec(v) = (- 3 ; 4)
⇔ x + 2 = - 3 ⇔ x = - 5 et y - 1 = 4 ⇔ y = 5
donc les coordonnées de N sont : (- 5 ; 5)
EX4
a) déterminer les coordonnées des milieux respectifs I et J des segments (RU) et (ST)
I milieu du segment (RU) : I((-8+1)/2 ; (- 1+3)/2) = I(- 7/2 ; 1)
J milieu du segment (ST) : J((-5-2)/2 ; (- 2+4)/2) = J(- 7/2 ; 1)
donc les segments (RU) et (ST) ont le même milieu
b) on en déduit que le quadrilatère RSUT est un parallélogramme (car ses diagonales RU et ST se coupent au même milieu)
ex5
démontrer que le triangle ABC est rectangle en B
il faut tout d'abord calculer les longueurs AB ; AC et BC; ensuite on applique la réciproque du th.Pythagore
vec(AB) = (7-4 ;4-1) = (3 ; 3) ⇒ AB² = 3² + 3² = 18
vec(AC) = (11 - 4 ; - 1) = (7 ; - 1) ⇒ AC² = 7²+(-1)² = 50
vec(BC) = (11-7 ; 0-4) = (4 ; - 4) ⇒ BC² = 4² + (-4)² = 32
AB² + BC² = 18 + 32 = 50
AC² = 50
on a bien l'égalité AC² = AB²+BC² , donc on en déduit d'après la réciproque du th.Pythagore que le triangle ABC est rectangle en B
Explications étape par étape :
Nous apprécions votre temps sur notre site. N'hésitez pas à revenir si vous avez d'autres questions ou besoin de précisions. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.