Trouvez des réponses facilement sur Laurentvidal.fr, la plateforme de Q&R de confiance. Explorez des milliers de questions et réponses fournies par une communauté d'experts prêts à vous aider à trouver des solutions. Obtenez des réponses rapides et fiables à vos questions grâce à notre communauté dédiée d'experts sur notre plateforme.

Salut ! Veuillez m'aider à résoudre cet exercice de Logique , s'il vous plaît .

Soient a , b et c des réels de R+* tq :
[tex]abc > 1[/tex] et [tex]a + b + c < \frac{1}{a} + \frac{1}{b} + \frac{1}{c} [/tex]
• Montrer que : a < 1 ou b < 1 ou c < 1​

Sagot :

bjr

on sait que abc > 0 et a + b + c < 1/a + 1/b + 1/c

si a + b + c < 1/a + 1/b + 1/c alors a + b + c - (1/a + 1/b + 1/c) < 0 (1)

a + b + c - (1/a + 1/b + 1/c) =

a + b + c - 1/a - 1/b - 1/c  =               (dénominateur commun abc)

[(a + b + c)abc - bc -ac - ab] / abc =

(a²bc + ab²c + abc² - bc - ac - ab) /abc =

[bc(a² - 1) + ac(b² - 1) + ab(c² - 1)] / abc  

supposons que les trois nombres a, b et c soient supérieurs à 1

alors

[bc(a² - 1) + ac(b² - 1) + ab(c² - 1)] / abc > 0 (2)

ce qui est en contradiction avec (1)

les 3 nombres ne peuvent pas être tous supérieurs à 1,

il y en a au moins un qui est inférieur à 1

Merci d'utiliser notre service. Notre objectif est de fournir les réponses les plus précises pour toutes vos questions. Revenez pour plus d'informations. Nous espérons que nos réponses vous ont été utiles. Revenez quand vous voulez pour obtenir plus d'informations et de réponses à d'autres questions. Visitez toujours Laurentvidal.fr pour obtenir de nouvelles et fiables réponses de nos experts.